COMMENTS ON THE ARTICLE [1]

KOJI AOYAMA

³ The aim of this note is to update the proof of [1, Proposition 3].

4 Firstly, we prove the following lemma.

5 Lemma 1. Let C be a nonempty subset of a Banach space E, $\{T_n\}$ a se-6 quence of mappings of C into E with a common fixed point, and $z \in C$ an 7 asymptotic fixed point of $\{T_n\}$. Then there exist a bounded sequence $\{x_n\}$ 8 in C and a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_n - T_n x_n \to 0$ and $x_{n_i} \to z$.

9 Proof. By assumption, there exist a sequence $\{y_m\}$ in C and a subsequence 10 $\{y_{m_i}\}$ of $\{y_m\}$ such that $y_m - T_m y_m \to 0$ and $y_{m_i} \to z$. Let u be a common 11 fixed point of $\{T_n\}$ and define a sequence $\{x_n\}$ in C by

12
$$x_n = \begin{cases} y_{m_i} & \text{if there exists } i \in \mathbb{N} \text{ such that } n = m_i; \\ u & \text{if } n \neq m_i \text{ for all } i \in \mathbb{N}. \end{cases}$$

13 Then we can verify that $x_{m_i} \rightarrow z$ and $x_n - T_n x_n \rightarrow 0$.

15
$$\hat{\mathbf{F}}(\{S_nT_n\}) \supset \mathbf{F}(\{S_nT_n\}) \supset \mathbf{F}(\{S_n\}) \cap \mathbf{F}(\{T_n\}) = \hat{\mathbf{F}}(\{S_n\}) \cap \hat{\mathbf{F}}(\{T_n\}).$$

Thus it is enough to show that $\hat{F}(\{S_nT_n\}) \subset \hat{F}(\{S_n\}) \cap \hat{F}(\{T_n\})$. Let $z \in$ 16 $\hat{F}(\{S_nT_n\})$. Then $z \in D$ and it follows from Lemma 1 that there exist a 17 bounded sequence $\{x_n\}$ in D and a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that 18 $x_n - S_n T_n x_n \to 0$ and $x_{n_i} \to z$. Thus [2, Lemma 3.6] implies that $x_n - z_n$ 19 $T_n x_n \to 0$. Therefore $z \in \hat{F}(\{T_n\})$. Moreover, [2, Lemma 3.6] also implies 20 that $T_n x_n - S_n T_n x_n \rightarrow 0$. Since $\{T_n x_n\}$ is a sequence in C, $T_{n_i} x_{n_i} =$ 21 $(T_{n_i}x_{n_i} - x_{n_i}) + x_{n_i} \rightarrow z$, and C is closed and convex, it follows that $z \in C$ 22 and hence $z \in F(\{S_n\})$. This completes the proof. 23

References

- [1] K. Aoyama, Asymptotic fixed points of sequences of quasi-nonexpansive type mappings,
 Banach and function spaces III (ISBFS 2009), 2011, pp. 343–350. MR3013135
- 27 [2] K. Aoyama, F. Kohsaka, and W. Takahashi, Strongly relatively nonexpansive sequences

1

2

24

in Banach spaces and applications, J. Fixed Point Theory Appl. 5 (2009), no. 2, 201–
 224. MR2529497 (2010h:47076)

^{30 (}K. Aoyama) Aoyama Mathematical Laboratory, Konakadai, Inage-ku, Chiba,
31 Chiba 263-0043, Japan

³² Email address: aoyama@bm.skr.jp